Intrinsic topological metal state in T-graphene

نویسندگان

چکیده

Abstract An intrinsic topological metal (TM) state is found in the T-graphene, a monolayer with both time-reversal symmetry and four-fold symmetry. The distinguishes itself by nontrivial electric polarization from ordinary metals features two local edge states corresponding nanoribbons. TM confirmed as transition bridging insulator when relative neighboring hoppings change lattice. nature further verified checking robustness of transport property against randomly-introduced strong disorders. fact that multiple indexed different parameters coexist such practical system shows broad prospect versatile devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic Two-Dimensional Organic Topological Insulators in Metal-Dicyanoanthracene Lattices.

We predict theoretical existence of intrinsic two-dimensional organic topological insulator (OTI) states in Cu-dicyanoanthracene (DCA) lattice, a system that has also been grown experimentally on Cu substrate, based on first-principle density functional theory calculations. The pz-orbital Kagome bands having a Dirac point lying exactly at the Fermi level are found in the freestanding Cu-DCA lat...

متن کامل

Intrinsic disorder in graphene on transition metal dichalcogenide heterostructures.

Semiconducting transition metal dichalchogenides (TMDs) are a family of van der Waals bonded materials that have recently received interest as alternative substrates to hexagonal boron nitride (hBN) for graphene, as well as for components in novel graphene-based device heterostructures. We elucidate the local structural and electronic properties of graphene on TMD heterostructures through scann...

متن کامل

Two-dimensional topological insulator state and topological phase transition in bilayer graphene.

We show that gated bilayer graphene hosts a strong topological insulator (TI) phase in the presence of Rashba spin-orbit (SO) coupling. We find that gated bilayer graphene under preserved time-reversal symmetry is a quantum valley Hall insulator for small Rashba SO coupling λ(R), and transitions to a strong TI when λ(R)>√[U(2)+t(⊥)(2)], where U and t(⊥) are, respectively, the interlayer potenti...

متن کامل

Topological confinement in bilayer graphene.

We study a new type of one-dimensional chiral states that can be created in bilayer graphene (BLG) by electrostatic lateral confinement. These states appear on the domain walls separating insulating regions experiencing the opposite gating polarity. While the states are similar to conventional solitonic zero modes, their properties are defined by the unusual chiral BLG quasiparticles, from whic...

متن کامل

Infrared Topological Plasmons in Graphene.

We propose a two-dimensional plasmonic platform-periodically patterned monolayer graphene-which hosts topological one-way edge states operable up to infrared frequencies. We classify the band topology of this plasmonic system under time-reversal-symmetry breaking induced by a static magnetic field. At finite doping, the system supports topologically nontrivial band gaps with mid-gap frequencies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: New Journal of Physics

سال: 2023

ISSN: ['1367-2630']

DOI: https://doi.org/10.1088/1367-2630/acccd7